Table Of Contents

Previous topic

Network (network)

Next topic

Reading and Writing Networks

This Page

BaseGraph

BaseGraph provides methods to work with additional data–describing nodes and edges:

  • items (Orange.data.Table) - information on nodes. Each row in the table corresponds to a node with ID matching row index.
  • links (Orange.data.Table) - information on edges. Each row in the table corresponds to an edge. Two columns titled “u” and “v” should be specified in the table which contain indices of nodes on the given edge.

The BaseGraph class contains also other methods that are common to the four graph types.

class Orange.network.BaseGraph

A collection of methods inherited by all graph types (Graph, DiGraph, MultiGraph and MultiDiGraph).

items()

Return the Orange.data.Table items with data about network nodes.

items_vars()

Return a list of features in the Orange.data.Table items.

Return the Orange.data.Table links with data about network edges.

Return a list of features in the Orange.data.Table links.

set_items(items=None)

Set the Orange.data.Table items to the given data. Notice that the number of instances must match the number of nodes.

Set the Orange.data.Table links to the given data. Notice that the number of instances must match the number of edges.

to_orange_network()

Convert the current network to >>Orange<< NetworkX standard. To use Orange.network in Orange widgets, set node IDs to be range [0, no_of_nodes - 1].

Graph Types

The reference in this section is complemented with the original NetworkX library reference. For a complete documentation please refer to the NetworkX docs. All methods from the NetworkX package can be used for graph analysis and manipulation. For reading and writing graphs refer to the Orange.network.readwrite docs.

Graph

class Orange.network.Graph(data=None, name='', **attr)

Bases: NetworkX.Graph, Orange.network.BaseGraph

Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters:

data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also

DiGraph, MultiGraph, MultiDiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = Orange.network.Graph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=Orange.network.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = Orange.network.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G     # check if node in graph
True
>>> [n for n in G if n<3]   # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
...     for nbr,eattr in nbrsdict.items():
...        if 'weight' in eattr:
...            (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

DiGraph

class Orange.network.DiGraph(data=None, name='', **attr)

Bases: NetworkX.DiGraph, Orange.network.BaseGraph

Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters:

data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also

Graph, MultiGraph, MultiDiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = Orange.network.DiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=Orange.network.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = Orange.network.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G     # check if node in graph
True
>>> [n for n in G if n<3]   # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
...     for nbr,eattr in nbrsdict.items():
...        if 'weight' in eattr:
...            (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

MultiGraph

class Orange.network.MultiGraph(data=None, name='', **attr)

Bases: NetworkX.MultiGraph, Orange.network.BaseGraph

An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters:

data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also

Graph, DiGraph, MultiDiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = Orange.network.MultiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=Orange.network.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = Orange.network.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G     # check if node in graph
True
>>> [n for n in G if n<3]   # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
...            # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
...     for nbr,keydict in nbrsdict.items():
...        for key,eattr in keydict.items():
...            if 'weight' in eattr:
...                (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

MultiDiGraph

class Orange.network.MultiDiGraph(data=None, name='', **attr)

Bases: NetworkX.MultiDiGraph, Orange.network.BaseGraph

A directed graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiDiGraph holds directed edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters:

data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also

Graph, DiGraph, MultiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = Orange.network.MultiDiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=Orange.network.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = Orange.network.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G     # check if node in graph
True
>>> [n for n in G if n<3]   # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
...            # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
...     for nbr,keydict in nbrsdict.items():
...        for key,eattr in keydict.items():
...            if 'weight' in eattr:
...                (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.